

A multi-scale experimental and modelling program for estimating groundwater recharge in the Surat Basin

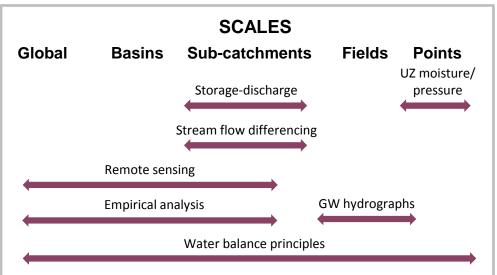
Prof Neil McIntyre Australian Groundwater Conference November 2015, Canberra

Background

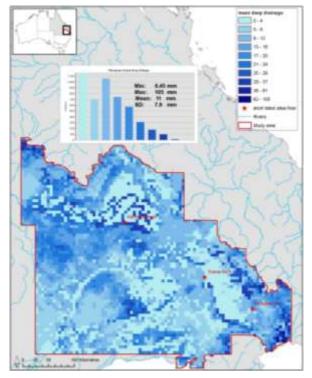
- Surat Basin is a part of the larger Great Artesian Basin, and a major water resource in the semi-arid interior
- Groundwater resources are highly utilised by multiple sectors
 - Additional volumes of water being extracted to produce gas
- Limited knowledge about groundwater recharge processes, their space and time variability and how to upscale them

Project aims:

- Study Location Surat Basin Great Artesian Basin State Capitals
- Develop new knowledge on groundwater recharge processes and pathways across 3 common hydrogeological units
- To inform recharge estimation for CSG groundwater impacts assessment and regional groundwater models



Multi-scale approach


- Multi-scale recharge research program, including:
 - Monitoring field sites (current and to be established)
 - Remote sensing
 - Upscale and integration of results

AWAP Broad Scale Deep Drainage Modelling

Mean annual deep drainage 1900 - 2014, varies from ~ 1 to 100 mm (AWAP - Raupach et al 2009).

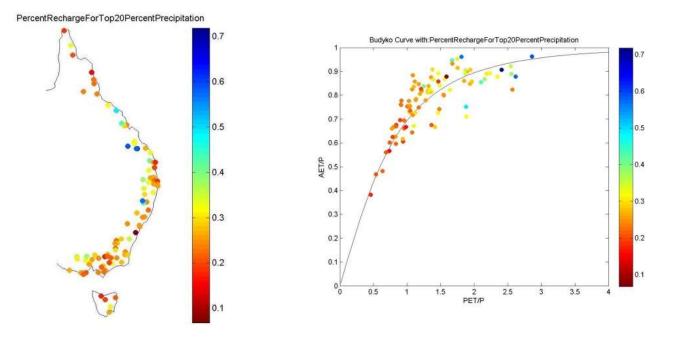
UNIVERSITY OUEENSLAND

Influence of ENSO on deep drainage Deep Drainage (mm/month) 10 1995 - 2000 2010 - 2013 ~22.2 mm/yr ~45.7 mm/yr 2000 - 2009 ~4.9 mm/yr 1993-01 1998-07 2004-01 2009-07 2014-12 2000 Bacalto 160 Walloon / Injune (mm) 150 1400 1200 늉 ۵. 1000 t 300 500 000 452 Measures 200 1900-01 1915-09 1927-05 1941-01 1954-10 1958-06 1980-02 1955-10 1009-07

Difference in deep drainage between Main Range Volcanics and Walloon Coal

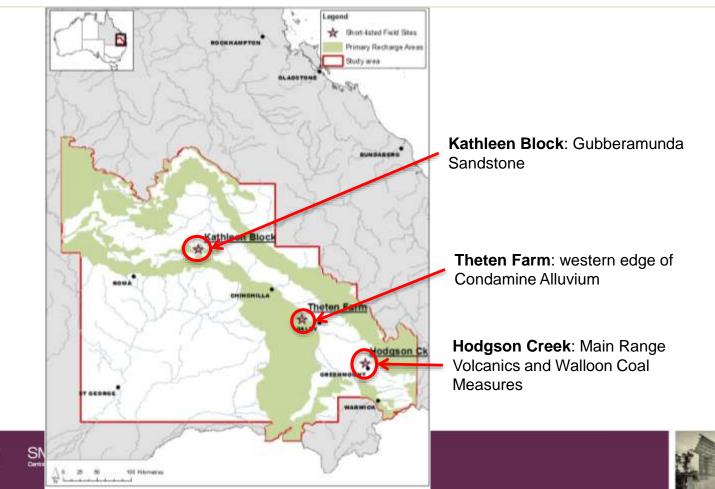
Variation in recharge across small catchments

- Recharge estimated in Main Range Volcanics (Tertiary fractured basalts) using surface and groundwater hydrographs
 - Sites are close by and have similar climatic and geologic conditions
- Recharge values generally low (0 3% rainfall)
 - Estimates vary by order(s) of magnitude between wet and dry years
 - Spatial variation geological heterogeneity and regional flow paths?
- Local scale estimates smaller than broad scale deep drainage

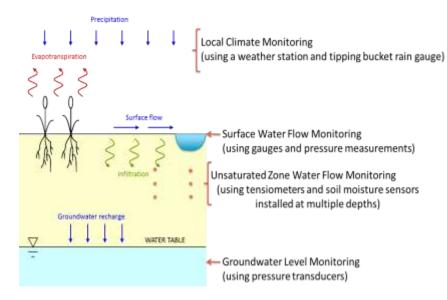

Method Used	Locations	Resolution	Time Period	Recharge (mm/year)
Water Table Fluctuation	Main Range Volcanics	A few metres	1993-2011	6 - 37
Storage-Discharge	Swan Creek	Small catchments	1999-2014	0 - 10
	Emu Creek		1999-2014	0 - 8
	Spring Creek		1999-2014	0 - 50
	Condamine River		1999-2014	1 - 27

Details presented at poster session: "Recharge estimation across the headwaters of the Condamine Basin using storage-discharge relationships"

Importance of wet years to recharge in E Australia

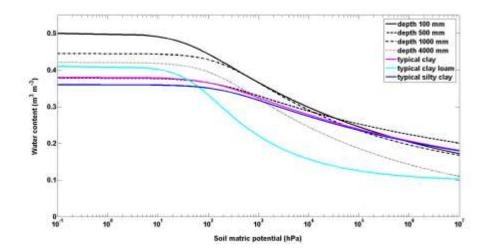

In drier regions, 50 – 70 % of recharge occurs in the wettest 20 % of years

Three experimental field sites

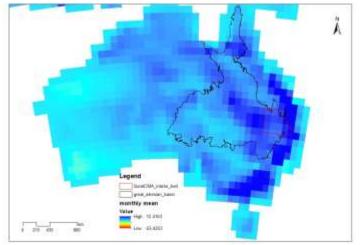

EVERSITY

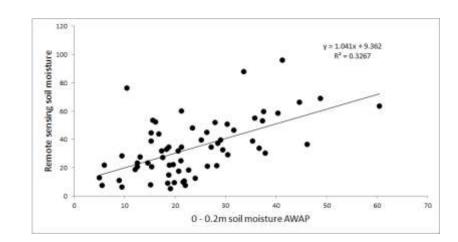
Experimental program

- Localised vs diffuse recharge pathways
- Preferential flow paths through cracked soils


Schematic of types of monitoring equipment to be employed

Deep drainage analysis at Theten Farm


- Experimental farm site has extensive monitoring network:
 - 19 bores (7 with logging equipment)
 - 15 soil moisture probes with 8 sensors extending to 4 m
 - Weather station
- Empirical data analysis and unsaturated zone modelling
- Water retention curves determined through
 - Inverse modelling
 - Hydraulic test
 - In-situ monitoring



What's next?

- Importance of localised vs diffuse recharge processes
- Importance of storm events and wet years
- Expanding and refining remote sensing techniques
 - Translation of shallow drainage estimates to groundwater recharge
- Regionalisation of recharge estimates

Mean monthly terrestrial water storage value - GRACE

Comparison of AWAP and remote sensing soil moisture estimates

