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Conclusion

The objective of the research was to develop a mathematically consistent continuum damage formulation which can describe the fracture propagation and damage evolution from a pre-

existing fracture of a 3-D rock specimen under uniaxial compression. From this study, it is concluded that the non-local implicit gradient damage formulation can remove the

pathological mesh dependence and strain localisation in local damage models. This nonlocal damage model introduces an additional length scale: the localization length, which must be

adequately resolved by the finite element mesh and places a constraint on the mesh resolution. Both the local and nonlocal damage model can be used to model rock fracture and burst

in mining, and well-bore stability in oil and gas operations. Other applications of these damage models of brittle failure are in composites and concrete.
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Application in a pre-existing sandstone specimen Local and nonlocal damage model 

Comparison

Figure-6: Mesh dependency analysis of local and nonlocal damage model, where l=8 mm.

Figure-5: Damage pattern of local and nonlocal damage model.

E is the Young’s modulus random sampling from Weibull

distribution and D is the damage variable.

𝐸 = 𝐸0(1 − 𝐷)

The elastic modulus of the damaged model is defined as

(Mondal et al. 2014),

Local damage model

Nonlocal damage model

Helmholtz smoothing equation:        തƐ − 𝑐∇2തƐ = 𝜅
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𝑙2 and l is the localization length scale

which represents the smoothing region of damage.
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, which is

the ratio the compressive and tensile strength. 𝜅 is the

equivalent strain.

(c) Experimental Result  (Lu et al. 2015)

Figure-3: Damage pattern where D=0 is the intact rock and D=1 is the full damaged rock.

Figure-4: Analysis of stress strain curve for different flaw angles.

Domain and geometry of the model

Figure-1: Numerical specimen for the simulation.
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Governing equations

Figure-2: Numerical validation for the cubic specimen. 

Model validation with concrete specimenObjectives
▪ Numerical modelling of rock with pre-existing flaw.

▪ Random sampling of elastic modulus with Weibull.

▪ Smoothing damage over a localization length scale.

▪ Eliminating well known mesh dependency problem.

▪ Finite element method, parallel computing, 55   

Million cells, esys-escript (Gross et al. 2015).

Our numerical results have good agreement with the 

experimental results of Viso et al. (2008) for both damage 

pattern and the peak stress of a 100 mm3 cubic concrete 

specimen.

Our numerical results in Figure-3 have good agreement with the experimental result of 

Lu et al. (2015) for a sandstone specimen with a pre-existing surface flaw under uniaxial 

compression. The peak stress is decreasing with the decreasing value of the flaw angle in 

Figure-4.  Different realisation of elastic modulus represent the statistical variation in 

peak stress up to 15% which is a quite good result.

The damage pattern of the nonlocal model in Figure-5 is wider than the local model 

because of  the large localisation length scale. If we used a smaller localisation length in 

the nonlocal model we could produce a damage pattern on a similar scale to the 

experimental result. However, smaller localisation lengths require a much finer mesh 

resolution for the FEM mesh and this is very computationally costly. From Figure-6 it is 

clear that nonlocal model can remove mesh dependence.
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