

1. Background and research objectives

> Background

The gas/water two-phase flow in cleat networks has been a critical issue in coal seam gas (CSG) reservoirs. A key parameter affecting the flow of gas in coal cleats is the wetting potential of gas/water (Li et al., 2012; Zhang et al., 2015). However, our understanding of wettability effects on gas flow still needs further research.

Fig. 1 Schematic diagram of the distribution and force analysis of gas bubble and gas column in capillary tubes (Xiangfang Li et al., 2012).

Main objectives

This research seeks to understand the gas flow behaviours in cleats, and the main objectives are:

- To build a LBM model to simulate bubble-water dynamics at pore scale;
- To analyse the effects of wettability and capillary pressure on gas-water flow capacity.

Fig. 2 Schematic diagram of (a) contact angle and (b)capillary imbibition phenomenon (http://www.reservoirengineering.org.uk)

Micro-Scale Simulation of Bubble-Water Flow in Coal Seam Gas Reservoirs by Lattice Boltzmann Method

20 kinds

of point

Jie Yi, Centre for Geoscience Computing, School of Earth Sciences, UQ Supervisors: Associate Professor Huilin Xing, Professor Victor Rudolph

3. Methodology

Lattice Boltzmann equations

 $g_i(x + e_i\delta t, t + \delta t) = g_i(x, t) + (1 - q)[g_i(x + e_i\delta t, t) - g_i(x, t)] + \frac{g_i^{eq}(x, t) - g_i(x, t)}{\tau}$ $= f_i(\boldsymbol{x}, t) + \frac{f_i^{eq}(\boldsymbol{x}, t) - f_i(\boldsymbol{x}, t)}{\tau_n} + \left(1 - \frac{1}{2\tau_n}\right) \frac{w_i}{c_s^2} \left[\boldsymbol{e}_i - \boldsymbol{u} + \frac{(\boldsymbol{e}_i \cdot \boldsymbol{u})}{c_s^2} \boldsymbol{e}_i\right] \cdot \left(\mu_{\phi} \nabla \phi + \boldsymbol{F}_b\right) \delta t$

> To distinguish different points on the fluid/solid interaction

Fig. 3 The verification of the wetting boundary condition

Fig. 4 The verification of the Laplace law

(a) $E_o = 5, M = 0.2267$ (b) $E_o = 10, M = 0.453$ (c) $E_o = 20, M = 0.907$

Fig. 5 Bubble shapes under different buoyancy force. This model (top) Naoki Takada model (bottom).

Conclusions

- For different contact angles, the gas bubble shape and relative permeability highly depends on wettability of coal.
- For bubble-water flowing in a cleat with a narrow throat, the fluid flow capacity.
- These phenomena are likely to have significant impacts on drainage rates and relative permeability within a coal seam.

Acknowledgements

The author appreciates the funding provided by the UQ Centre for Coal Seam Gas (CCSG) and its industry members APLNG, Arrow Energy, QGC & Santos.

average velocity of bubble with different drag forces

movement are significantly different, which means the

capillary pressure plays an important role in determining the

